
Journal of Machine Learning Research 1–10

Learning of Procedural Systems: Counterexample Projection
and Decomposition

Markus Frohme markus.frohme@cs.tu-dortmund.de
Bernhard Steffen steffen@cs.tu-dortmund.de
Chair of Programming Systems, Faculty of Computer Science, TU Dortmund, Germany.

Abstract
Our recently developed active automata learning algorithm for systems of procedural
automata (SPAs) splits the inference of a context-free/procedural system into a simultaneous
inference of individual DFAs for each of the involved procedures. This paper concretizes
two essential features of our algorithm: counterexample projection and counterexample
decomposition, which can be considered the technical key for achieving a modular learning
algorithm of high efficiency.
Keywords: active automata learning, procedural systems, context-free languages

1. Introduction

Our recently developed active automata learning algorithm for systems of procedural
automata (SPAs) Frohme and Steffen (2018, 2019) splits the inference of a context-
free/procedural system into a simultaneous inference of individual DFAs for each of the
involved procedures. Key to our approach are the two concepts of projection and expan-
sion: global counterexample traces are transformed into counterexamples for the DFAs of
concerned procedures, and membership queries for the individual DFAs are expanded to
membership queries of the global system.

This paper focuses on the SPA counterexample decomposition and the subsequent
counterexample projection step, as the sketch of the simpler query expansion step provided
in Frohme and Steffen (2018) is sufficiently detailed. Figure 1 illustrates three essential
characteristics of SPAs, which are important to understand our learning approach.

Procedure: S

S0 S2

S1

S4

S3

S5

a

b

T

S

S

a

b

Procedure: T

T0 T1 T2 T3
c

S

T c

Figure 1: An SPA representation of the context-free grammar of Figure 2 (left).

• the intuitive structure: the operational semantics of SPAs follow the copy-rule semantics, i.e.
upon encountering a procedural call the control is transferred to the respective procedural
automaton from which it only can return at specific states. While this is a universal concept
that is independent of the automaton type of the procedures and thus can be realized on a

c© M. Frohme & B. Steffen.

Learning of Procedural Systems: Counterexample Projection and Decomposition

purely syntactical level (e.g. via graph transformation/rewriting Rensink (2004)), we focus on
systems modeled in terms context-free grammars, which semantically associate an accepted
word with a successful run of a system.
In order to describe context-free systems via DFAs, we assume the procedural calls as observable,
which we justify by the fact that in practice, the required observability can be achieved via
easy instrumentation Frohme and Steffen (2018). When ignoring this control overhead, the set
of accepting runs coincides with the context-free language corresponding to the procedural
system.

• the expressive power: SPAs cover the full spectrum of context-free languages. E.g., the SPA
shown in Figure 1 “implements” the language of all palindromes over the alphabet {a, b, c}.

• the role of procedural names (non-terminals): they can be considered as ’architectural knowledge’
about the system to be learned.1 In this example it imposes a (here intended, but from the
mere language perspective unnecessary) separate treatment of symbol c, something which
could not be observed simply on the basis of terminal words. This allows one to represent the
compositional architecture of the system in terms of intuitive models.

Outline

We continue in Section 2 with introducing preliminary terminology and concepts from
Frohme and Steffen (2019) and related fields of research. Section 3 presents our main
contribution of the paper: Concretizing the two essential steps of counterexample projection
and counterexample decomposition. Section 4 concludes the paper and provides some
directions for future work.

2. Preliminaries and related work

The formal foundation of our learning approach, similar to many other active automata
learning algorithms, is the minimal adequate teacher (MAT) framework proposed by Angluin
Angluin (1987). Key to this framework is the existence of a teacher that is able to answer
membership queries, i.e. questions, whether a word is a member of the target language, and
equivalence queries, i.e. questions, whether a tentative hypothesis exactly recognizes the
target language. Active automata learning (for regular languages) can then be summarized
as the iterative process of exploration and verification to discover the equivalence classes of
the Myhill-Nerode congruence Nerode (1958) for the target language. We expect the reader
to be familiar with the general process and formalities of active automata learning. For a
more thorough introduction (to the regular case) see e.g. Steffen et al. (2011) or (Kearns
and Vazirani, 1994, Chapter 8).

Regular languages are not powerful enough to capture the key characteristics of proce-
dural systems, which support mutually recursive calls between their sub-procedures and
thereby allow to express the entire spectrum of context-free languages. These semantics
are, however, expressible with context-free languages. Angluin herself already reasoned
about the inference of context-free languages Angluin (1987), but her extensions required
for answering e.g. membership queries have – at least to the knowledge of the authors –
prevented any practical application.

For inferring context-free/procedural systems, we propose an instrumentation similar
to the idea of parenthesis grammars McNaughton (1967): Each invocation of a procedure
P can be observed by means of a call symbol P’, which denotes the start of a specific

1. Exploiting given (perhaps architectural) knowledge about the system to be learned is one of the most
promising approaches to boost automata learning for large-scale practical application.

2

Learning of Procedural Systems: Counterexample Projection and Decomposition

procedure, as well as a return symbol R, which denotes its termination. An example of this
instrumentation is given in Figure 2 (right).

S -> a |
a S a |
b |
b S b |
T |
ε

T -> c |
c T c |
S

S -> S’ a R |
S’ a S a R |
S’ b R |
S’ b S b R |
S’ T R |
S’ R

T -> T’ c R |
T’ c T c R |
T’ S R

Figure 2: On the left: production rules of an exemplary context-free grammar for palindromes
over the three terminal symbols a, b, c, using two non-terminal symbols S and T.
On the right: production rules of the instrumented system, introducing two new
(observable) call symbols S’ and T’ and an (observable) return symbol R.

For software-based systems, this instrumentation can easily be integrated via, e.g., aspect-
oriented programming or proxying in object-oriented programming. In certain application
domains – especially tag languages such as (DTD-based) XML – these observable entry-
and exit-points require no instrumentation at all.

The idea of assigning specific semantics to certain input symbols is conceptually related
to visibly pushdown languages (VPLs) Alur and Madhusudan (2004); Alur et al. (2005).
In fact, our instrumented systems can be described by a visibly pushdown automaton
(VPA). However, VPAs operate on a single global state space, whereas our compositional
SPA approach allows for truly independent procedures, which proves beneficial during our
learning process and counterexample decomposition. For a more involved discussion of the
difference between the two formalisms, see Frohme and Steffen (2019). We continue to
introduce the formal definitions and notations we use throughout the paper:

Definition 1 (SPA alphabet) An SPA alphabet Σ = Σc] Σi] {R} is the disjoint union of three
finite sets, where Σc denotes the call alphabet, Σi denotes the internal alphabet and R denotes the
return symbol.

An SPA alphabet can be seen as a special case of a visibly pushdown alphabet Alur
and Madhusudan (2004); Alur et al. (2005). We choose a distinct name here in order
to address the specifics of SPA alphabets like having a shared return symbol for all
procedures. In our palindrome example in Figure 2 (right), the alphabet definition would
be Σ = {S′, T ′}] {a, b, c}] {R}. Note, that for reasons of simplicity, we will continue to
use a single identifier for both the observable symbol and the corresponding procedure if no
distinction between the two is required.

An SPA word w is then defined as a sequence of symbols over Σ (written as w ∈ Σ∗).
For 1 ≤ i ≤ j ≤ |w|, we write w[i, j] to denote the sub-sequence of w starting at the symbol
at position i and ending at position j (inclusive). For any i > j, w[i, j] denotes the empty
word ε. Furthermore, we limit ourselves to only consider well-matched words as only those
have the chance to be accepted. Intuitively, a well-matched word is a word, where every
call symbol is succeeded (at some point) by a matching return symbol and no unmatched

3

Learning of Procedural Systems: Counterexample Projection and Decomposition

call or return symbols exist. To formalize this constraint, let us further introduce the idea
of call and return balance, which will also be used later for counterexample decomposition.

Definition 2 (Call/Return balance) Let Σ = Σc]Σi]{R} be an SPA alphabet. The call/return
balance is a function β : Σ∗ → Z, defined as

β(ε) = 0

β(u · v) = β(u) +


1 if v ∈ Σc

0 if v ∈ Σi

−1 if v = R

∀u ∈ Σ∗, v ∈ Σ

Given the above definition of the call/return balance, we can formally define well-matched
words as words w ∈ Σ∗, where every prefix u satisfies β(u) ≥ 0 and every suffix v satisfies
β(v) ≤ 0.

2.1. Systems of procedural automata

Definition 3 (Procedural automaton) Let Σ = Σc] Σi] {R} be an SPA alphabet and ci ∈ Σc

denote a procedure. A procedural automaton for procedure ci over Σ is a deterministic finite automaton
P ci = (Qci , qci0 , δ

ci , Qci
F), where

• Qci denotes the finite, non-empty set of states,

• qci0 ∈ Qci denotes the initial state,

• δci : Qci × (Σc ∪ Σi)→ Qci denotes the transition function, and

• Qci
F ⊆ Qci denotes the set of accepting states.

We define L(P ci) as the language of P ci , i.e. the set of all accepted words of P ci .

Definition 4 (System of procedural automata) Let Σ = Σc]Σi]{R} be an SPA alphabet and
P ci denote a procedural automaton for a corresponding ci ∈ Σc. A system of procedural automata S
is given by the tuple (P c1 , ..., P cq), with q = |Σc|.

In essence, a procedural automaton resembles a deterministic finite automaton (DFA)
that accepts the language of right-hand sides of production-rules for a specific non-terminal,
where (observable) call symbols represent the corresponding non-terminals. Consequently,
a system of procedural automata (with a designated procedure c∗ ∈ Σc marked as initial
procedure) constitutes a context-free grammar. Both formalisms are equally expressive, as
one can easily transform one into the other (a CFG-to-SPA transformation is trivial, for
the SPA-to-(instrumented-)CFG transformation see Definitions 7 and 8 in Appendix A).
An example of the SPA representation of the context-free grammar of Figure 2 is shown in
Figure 1.

For defining the global acceptance criterion of an SPA, we assume that the reader is
familiar with the commonly known properties of CFGs – especially the induced language
L(G) of a context-free grammar G (Hopcroft et al., 2001, Chapter 5).

Definition 5 ((instrumented) acceptance criterion of an SPA) Let S = (P c1 , ..., P cq) be an
SPA, c∗ ∈ Σc a designated start procedure and G be the induced (instrumented) context-free grammar
of S. The SPA S accepts a word w ∈ Σ∗ iff w ∈ L(G), i.e. L(S) = L(G).

4

Learning of Procedural Systems: Counterexample Projection and Decomposition

3. Global and local counterexamples

SPAs are characterized by their individual procedures. Therefore, the main task of inferring
an SPA is to infer each of the individual procedural automata, which on its own is a
regular inference problem. Our SPA learner coordinates regular learning algorithms (one
for each procedure) and transforms information between the local procedural learners and
the global (instrumented) context-free system under learning (SUL). Key to our approach
is a translation layer that bridges between the view of the entire system and the local view
concerning the individual procedural automata: Local queries of the procedural learning
algorithms are expanded to global queries of the instrumented SUL, and global counterexample
traces for the global system are projected onto local counterexample traces of the concerned
procedural automata.

For being able to perform these translations we maintain so-called access, terminating
and return sequences. Intuitively, these sequences store information about how a procedural
automaton can be accessed within the global SPA, how a successfully terminating run
of a procedure looks like, and how global termination can be achieved after executing a
procedure (accessed by the matching access sequence). As the membership query expansion
has been described in sufficient detail in Frohme and Steffen (2018) we focus here on the
counterexample projection and the counterexample decomposition. Although, chronologi-
cally, counterexample decomposition precedes counterexample projection, we present the
counterexample projection first, as projection is also applied during the query translation
required for the counterexample decomposition.

3.1. Counterexample projection

Global counterexamples need to be translated to local counterexamples in order to allow
the regular learner to refine the corresponding local hypothesis. During counterexample
decomposition (see Section 3.2 for details), one obtains a decomposition (u, a, v) ∈ Σ∗×(Σc∪
Σi)×Σ∗, such that after parsing u, the input a identifies a wrong transition in the tentative
hypothesis, which can be witnessed by the distinguishing suffix v. The corresponding
projection step, which essentially reverses query expansion, is a bit more involved. Given a
global counterexample ce and the position 1 ≤ l ≤ |ce| of a, at which the information of
interest is located, we first extract the well-matched subword surrounding said position. We
determine lmin, lmax as follows:

lmin = max
i∈{0,...,l−1}

i+ 1 s.t. β(ce[1, i]) < β(ce[1, l − 1])

lmax = min
i∈{l,...,|ce|}

i s.t. β(ce[1, i]) < β(ce[1, l − 1])

Intuitively, lmin marks the index of the call symbol of the procedure that performs
the violating transition, whereas lmax marks the index of the return symbol terminating
the procedure in question. After computing the two limits, we can extract from ce[lmin]
the procedure that needs refinement, and from ce[lmin + 1, lmax − 1] the relevant input
sequence for the local learner. This input sequence, however, still needs to be translated
into a local context. This is done by symbol-wise processing, which leaves internal symbols
unchanged and whenever a call (return) symbol is encountered, it removes all following
(previous) symbols until the matching return (call) symbol is encountered. See Figure 3 for
illustration.

As indicated, the decomposition of the counterexample can be transferred directly from
the global context (g) to the local context (l) of the concerned procedure to trigger the
local refinement. The constraint of a ∈ Σc ∪ Σi is addressed in more detail in Section 3.2.

5

Learning of Procedural Systems: Counterexample Projection and Decomposition

Global counterexample:

Local counterexample:

c1w1c2 i1i2 c3w2r i3 i4 c2w3r i5 rw3r

ug ag vg

i1i2 c3 i3 i4 c2 i5
ul al vl

Figure 3: The projection of a global counterexample (in which the violating transition occurs
when parsing i4) to a local counterexample for the procedural automaton of c2.

3.2. Counterexample decomposition

The following discussion is based on the work of Rivest & Schapire Rivest and Schapire
(1989), who presented this type of decomposition of counterexamples for regular systems
and the work of Isberner (Isberner, 2015, Chapter 6), who has lifted these results to the
context of visibly pushdown languages. Intuitively, counterexample decomposition proceeds
by tracing the input sequence of the given counterexample both in the system under learning
and in the current hypothesis, to identify an input symbol, which transitions the SUL and
the current hypothesis into (provable) different successor states. This process is sketched in
Figure 4:

SUL:

Hyp.:

u a v

Figure 4: The decomposition of a (regular) counterexample into a tuple (u, a, v) ∈ Σ∗
reg ×

Σreg × Σ∗
reg, such that a denotes an input that transitions the current hypothesis

into a (provable) different state compared to the SUL.

In the regular case, i.e. for a regular language over some finite alphabet Σreg, the
process of analyzing a counterexample ce ∈ Σ+

reg is given by finding a decomposition
(u, a, v) ∈ Σ∗reg ×Σreg ×Σ∗reg such that ce = uav and mq([u]Hav) 6= mq([ua]Hv). Here, mq
returns the answer to a given membership query and [u]H returns the access sequence of the
hypothesis state reached by u, i.e. the unique representative of the associated equivalence
class (cf. Section 2). For such a decomposition, after reading u, a transitions the SUL and
the hypothesis into different states (reached by [u]Ha and [ua]H), which can be proven by
appending the distinguishing suffix v.

In the context of our instrumented context-free languages, special notice needs be
given to the call and return symbols, because they reliably synchronize the two systems as
they isolate individual sub-procedures. This allows us to extract individual procedures for
hypothesis refinements. An example of this synchronization is given in Figure 5:

Without loss of generality, Figure 5 shows the scenario for a positive counterexample, i.e.
a word that is accepted by the SUL but rejected by the conjectured hypothesis SPA, because

6

Learning of Procedural Systems: Counterexample Projection and Decomposition

SUL:

Hyp.:

sink

u a v

win−2

c i
n
−
1 win−1

c i
n

win
R

R

win−2

c i
n
−
1 win−1

c i
n

win
R

R

P cin

P cin−1

...

Hin

Hin−1

...
R

Figure 5: The decomposition of an instrumented counterexample into a tuple (u, a, v) ∈
Σ∗×(Σc∪Σi)×Σ∗, where the access sequence u consists of well-matched subwords
wi ∈ Σ∗ and unmatched call symbols ci ∈ Σc.

a return symbol is encountered in a non-accepting state of hypothesis Hin . Equivalently,
a negative counterexample, i.e. a word that is rejected by the SUL but accepted by the
conjectured hypothesis SPA, would cause such a sink-transition in the system under learning.

For the computation of access sequences ([u]H), we have to account for the special role
of call and return symbols: For u = ci1w1 · · · cinwn, where wi ∈ Σ∗ represent well-matched
words and ci ∈ Σc represent (unmatched) call symbols, [u]H resolves to ci1 [w1]Hi1

· · ·
cin [wn]Hin

, where Hi represents the tentative hypothesis of procedure ci. This modification
allows us to determine the access sequence of a (nested) procedural hypothesis state similar
to the regular case, while at the same preserving the structural/hierarchical information
of the unmatched call symbols, which guarantees that queries in the form of [u]Hav (or
[ua]Hv) are still well-matched.

During this kind of counterexample decomposition, we make heavy use of our query
translation layer: The well-matched subwords wj may contain arbitrarily nested procedural
calls. For determining the access sequences in the local hypotheses Hij , we project each
(nested) invocation to a single call symbol (cf. Figure 3) to trace the corresponding
transitions in Hij . Similarly, if an extracted access sequence [wj]Hij

contains call symbols,
we expand them with their corresponding terminating sequence prior to contacting the
membership oracle to ensure the well-matchedness of the query.

Special notice should be given to the case where we analyze a decomposition with
a = R. In this situation, the two sequences [u]Hav and [ua]Hv are given by ci1 [w1]Hi1

· · ·
cin [wn]Hin

Rv and ci1 [w1]Hi1
· · · cin−1

[wn−1cinwnR]Hin−1
v, respectively. The return action

may expose faulty behavior because either Hin wrongfully parses (the translated) wn, or
Hin−1 wrongfully parses (the translated) wn−1cinwnR, so we need to look at two hypotheses.
If we analyze a positive counterexample, we know that both cin−1 and cin must accept the
(translated) sequences and we can simply select the hypothesis that rejects its respective
(translated) sequence. If we analyze a negative counterexample, we need to consider two
situations, because mq([u]Hav) 6= mq([ua]Hv) only gives the information of a mismatch

7

Learning of Procedural Systems: Counterexample Projection and Decomposition

location: If [u]Hav is rejected and [ua]Hv is accepted, we know the error is located in
Hin−1 because Hin correctly rejected wn. In the other case ([u]Hav is accepted and [ua]Hv
is rejected), we know the error is located in Hin because Hin−1

correctly rejected (the
translated) wn−1cinwnR. Once we have identified the faulty hypothesis, we can continue to
analyze the counterexample within the range of the procedural trace and ensure that for
the final decomposition we have a ∈ Σc ∪ Σi. Luckily, distinguishing the two cases does not
require additional queries, as the answers to mq([u]Hav) and mq([ua]Hv) are already known
from determining a and the continued counterexample decomposition does not impact the
asymptotic query complexity of the counterexample decomposition.

Please note, that these translations have a lot of potential for improving query perfor-
mance, because for the expansion steps one can exchange access sequences, terminating
sequences, and return sequences, whenever one has found shorter candidates during the
learning process. This interchangeability is only possible, because the individual procedures
in our SPA approach are truly independent (as they resemble a context-free grammars).
Comparable formalisms, such as VPAs, need to parse the complete counterexample as-is,
because every single symbol impacts the globally shared state of a VPA.

Summing up, the refinement of a tentative SPA hypothesis consists of the following three
steps:

1. By using our global acceptance criterion (cf. Definition 5) and the concept of query translation,
we can pinpoint a single symbol in the global counterexample that transitions a procedural
hypothesis into a wrong state (counterexample decomposition).

2. This symbol allows one to extract the affected procedure that performs said transition (ce[lmin],
cf. Section 2).

3. Using counterexample projection, the projected counterexample can be passed to the local
learning algorithm of the identified procedure to initiate the necessary local refinement process.

The correctness of this approach is proved in Frohme and Steffen (2019):

Theorem 6 (Correctness and termination) Having access to a MAT teacher for an instru-
mented context-free language L, our learning algorithm determines a canonical SPA S = (P c1 , ..., P cq)
for L requiring at most n+ 1 equivalence queries, where n =

∑
ci∈Σc

|Qci |.

4. Conclusion and future work

In this paper, we have concretized two essential features of our SPA learning algorithm:
counterexample projection and counterexample decomposition, which has only been sketched
in Frohme and Steffen (2018), and which can be considered the technical key for achieving a
modular learning algorithm of high efficiency. In addition to allowing a modular treatment
of the involved procedural automata, which keeps the complexity of the algorithm at the
level of regular learning, the involved query translation, which bridges between a global
SPA view and a local view concerning the individual procedural systems, provides a high
potential of dynamic query optimization: One can exchange access sequences, terminating
sequences, and return sequences whenever one has found shorter candidates during the
learning process. This interchangeability is only possible, because the individual procedures
in our SPA approach are truly independent, in contrast to, e.g., a VPA representation.

Currently, we are investigating the power of SPAs for “never-stop learning” Bertolino
et al. (2012) which has the potential to particularly profit form dynamic query optimizations.
Our first experimental results concerning counterexample lengths of 100.000 and more are
very promising.

8

Learning of Procedural Systems: Counterexample Projection and Decomposition

References

Rajeev Alur and Parthasarathy Madhusudan. Visibly pushdown languages. In Proceedings of the
36th annual ACM symposium on Theory of computing, pages 202–211. ACM, 2004.

Rajeev Alur, Viraj Kumar, P. Madhusudan, and Mahesh Viswanathan. Congruences for Visibly
Pushdown Languages, pages 1102–1114. Springer Berlin Heidelberg, Berlin, Heidelberg, 2005. ISBN
978-3-540-31691-6. doi: 10.1007/11523468_89. URL https://doi.org/10.1007/11523468_89.

Dana Angluin. Learning Regular Sets from Queries and Counterexamples. Information and Compu-
tation, 75(2):87–106, 1987.

Antonia Bertolino, Antonello Calabrò, Maik Merten, and Bernhard Steffen. Never-stop Learn-
ing: Continuous Validation of Learned Models for Evolving Systems through Monitoring.
ERCIM News, 2012(88):28–29, 2012. URL http://ercim-news.ercim.eu/en88/special/
never-stop-learning-continuous-validation-of-learned-models-for-evolving-systems-through-monitoring.

Markus Frohme and Bernhard Steffen. Active Mining of Document Type Definitions. In Falk
Howar and Jiři Barnat, editors, 23rd International Conference, FMICS 2018, Maynooth, Ireland,
September 3-4, 2018, Proceedings. Springer International Publishing, 2018. ISBN 978-3-030-00243-5.

Markus Frohme and Bernhard Steffen. Compositional Learning of Mutually Recursive Procedural
Systems. 2019. Under submission.

John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction to automata theory, languages,
and computation - (2. ed.). Addison-Wesley series in computer science. Addison-Wesley-Longman,
2001. ISBN 978-0-201-44124-6.

Malte Isberner. Foundations of Active Automata Learning: An Algorithmic Perspective. PhD thesis,
Technical University Dortmund, Germany, 2015. URL http://hdl.handle.net/2003/34282.

Michael J. Kearns and Umesh V. Vazirani. An Introduction to Computational Learning Theory. MIT
Press, Cambridge, MA, USA, 1994. ISBN 0-262-11193-4.

Robert McNaughton. Parenthesis grammars. J. ACM, 14(3):490–500, July 1967. ISSN 0004-5411.
doi: 10.1145/321406.321411. URL http://doi.acm.org/10.1145/321406.321411.

A. Nerode. Linear Automaton Transformations. Proceedings of the American Mathematical Society,
9(4):541–544, 1958. ISSN 00029939.

Arend Rensink. The GROOVE Simulator: A Tool for State Space Generation. In John L. Pfaltz,
Manfred Nagl, and Boris Böhlen, editors, Applications of Graph Transformations with Industrial
Relevance, pages 479–485, Berlin, Heidelberg, 2004. Springer Berlin Heidelberg. ISBN 978-3-540-
25959-6.

Ronald L. Rivest and Robert E. Schapire. Inference of Finite Automata Using Homing Sequences. In
Proc. 21st ACM Symp. on Theory of Computing, pages 411–420. MIT Laboratory for Computer
Science, ACM Press, May 1989. doi: http://doi.acm.org/10.1145/73007.73047.

Bernhard Steffen, Falk Howar, and Maik Merten. Introduction to Active Automata Learning from a
Practical Perspective. In Marco Bernardo and Valérie Issarny, editors, Formal Methods for Eternal
Networked Software Systems, volume 6659 of Lecture Notes in Computer Science, pages 256–296.
Springer Berlin Heidelberg, 2011. doi: 10.1007/978-3-642-21455-4_8.

9

https://doi.org/10.1007/11523468_89
http://ercim-news.ercim.eu/en88/special/never-stop-learning-continuous-validation-of-learned-models-for-evolving-systems-through-monitoring
http://ercim-news.ercim.eu/en88/special/never-stop-learning-continuous-validation-of-learned-models-for-evolving-systems-through-monitoring
http://hdl.handle.net/2003/34282
http://doi.acm.org/10.1145/321406.321411

Learning of Procedural Systems: Counterexample Projection and Decomposition

Appendix A. Induced CFGs of an SPA

For formalizing the transformation of an SPA into a context-free grammar, we use grammars
in the form of G = (N,T, P, S) (N = non-terminals, T = terminals, P ⊆ N × (N ∪ T)∗ =
production relation, S = start non-terminal). Note, that specifications of context-free
grammars in extended BNF allow to specify the right-hand sides of production rules as
regular expressions.

Definition 7 (Induced context-free grammar of an SPA) Let Σ = Σc]Σi] {R} be an SPA
alphabet, c∗ ∈ Σc a designated start procedure and S = (P c1 , ..., P cq) a corresponding SPA. Further-
more, let reg be a function, that returns for every regular language Lreg a regular expression exactly
describing the language, i.e. Lreg = L(reg(Lreg)) (Hopcroft et al., 2001, Chapter 3). Using S, one
constructs a context-free grammar G = (N,T, P, S) in EBNF, such that:

• N = Σc

• T = Σi

• P = {(ci, reg(L(P ci))) | ci ∈ Σc}

• S = c∗

Note here, that the observable call symbols are used as non-terminals and thus are not
part of the induced language. This is because these symbols were only introduced as part
of our instrumentation process. With this construction of the (original) system, one can
easily see, how the instrumented system can be constructed (cf. Figure 2: left vs. right).

Definition 8 (Induced instrumented context-free grammar of an SPA) Let Σ = Σc]Σi]
{R} be an SPA alphabet, c∗ ∈ Σc a designated start-procedure and S = (P c1 , ..., P cq) a corresponding
SPA. Furthermore, let reg be defined as in Definition 7 and nt be a function, that returns for every
regular expression over Σ the same expression, where every observable call symbol ci ∈ Σc has
been replaced with an arbitrary but unique non-terminal symbol xi 6∈ Σ. Using S, one constructs a
context-free grammar G = (N,T, P, S) in EBNF, such that:

• N = {nt(ci) | ci ∈ Σc}

• T = Σc ∪ Σi ∪ {R}

• P = {(nt(ci), ci · nt(reg(L(P ci))) ·R) | ci ∈ Σc}

• S = nt(c∗)

10

	Introduction
	Preliminaries and related work
	Systems of procedural automata

	Global and local counterexamples
	Counterexample projection
	Counterexample decomposition

	Conclusion and future work
	Induced CFGs of an SPA

